

ACB-BF592 ユーザーズマニュアル 第 5 版

金子システム株式会社

ご注意

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。 当社製品のご購入およびご使用にあたりましては、当社ホームページを通じて公開される情報を参 照ください。
- 2. 当社から提供する情報の正確性と信頼性には万全を尽くしていますが、誤りがないことを保証する ものではありません。当社はその使用に対する責任を一切負いません。その使用によって第三者の 特許権、著作権その他知的財産が侵害された場合でも、同様に責任を負いません。
- 3. 本資料は、当社の書面による事前の明示同意がない限り、いかなる形式でも複製できません。
- 4. 当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。

目次

1	はじ	.めに	3
		パッケージ内容	
		·ドウェア・リファレンス	
		製品外観	
		ブロック図	
		外形寸法	
		電気特性	
	2.5	DIP スイッチの設定	6
	2.6	コネクタ仕様	7
	2.7	JTAG ヘッダ	9
3	更新	「履歴	9

1 はじめに

このたびは当社製品をご購入いただき、ありがとうございます。

本製品は、アナログ・デバイセズ社 DSP である Blackfin ADSP-BF592 を使用した CPU ボードです。本製品 ACB-BF592 の特徴は以下の通りです。

- 52.07mm×18.29mm と小型で、600mil 40 ピン DIP IC と同一サイズです
- ブレッドボードに挿入でき、実験に最適です
- Blackfin の動作に必要な電源は基板にて生成するため、3.3V を供給すれば動作いたします
- DIP スイッチにより、ブートモードが切換えできるため、ご都合に合わせたブートが指定可能です
- SPI フラッシュメモリ搭載なので、外部データの保存も可能です

また、ADSP-BF592プロセッサの特徴は以下の通りです。

- 最大 400MHz コアクロックで動作し、2 個の MAC(積和演算器)により、800MMACs(メガ積和演算/秒)のパフォーマンスに達します
- 遅延なしで動作可能な L1 SRAM を 68k バイト内蔵
- C ランタイムライブラリ、VDK RTOS コードが書かれた L1 ROM を内蔵
- 省電力
- 2個のSPI、2個のSPORT、1個のUART、1個のPPI
- 9個のペリフェラル DMA チャンネルと、2個のメモリ間 DMA チャンネル
- 9×9mmのLFCSPパッケージ

詳細は、アナログ・デバイセズ社の ADSP-BF592 のサイトを参照ください。

http://www.analog.com/jp/processors-dsp/blackfin/adsp-bf592/processors/product.html 関連する技術資料は、以下を参照ください。

 $\frac{http://www.analog.com/jp/processors-dsp/blackfin/adsp-bf592/processors/technical-documentation/index.html$

● 回路図やサンプルプログラムは、以下のサイトを参照ください。 http://kaneko-sys.co.jp/support/

1.1 パッケージ内容

ACB-BF592 のパッケージには、以下が含まれます。

表 1 パッケージ内容

内容	数量
ACB-BF592 ボード	1枚
20×1 列 ピンヘッダ	2個
13 ピンヘッダ	1個

2 ハードウェア・リファレンス

2.1 製品外観

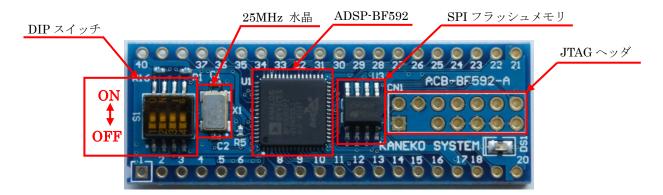
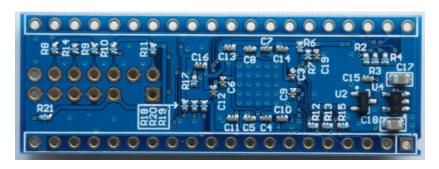
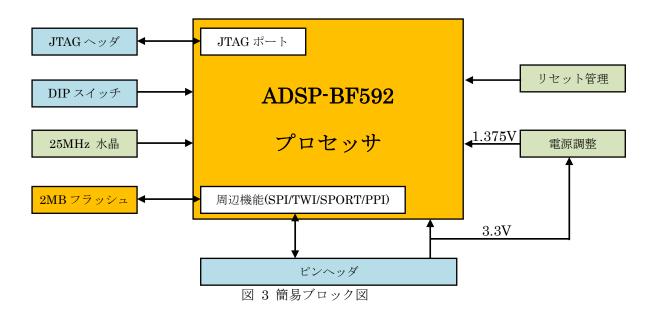


図 1 表面写真




図 2 裏面写真

ご使用前に、DIPスイッチの保護シートをはがしてください。

2.2 ブロック図

ここでは、ACB-BF592ボード上のプロセッサの構成を説明します。

ACB-BF592 は、ADSP-BF592 Blackfin プロセッサを中心に、動作に最低限必要となる以下の機能で構成されています。

- JTAG ヘッダ
- DIP スイッチ(ブートモード、フラッシュメモリのライトプロテクトを設定)
- 25MHz 水晶
- 2MB SPI フラッシュメモリ
- 1.375V リニアレギュレータ
- リセット管理(リセットスーパーバイザ)

2.3 外形寸法

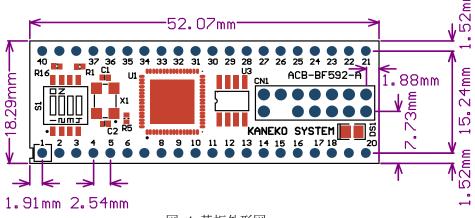


図 4 基板外形図

2.4 電気特性

表 2 電気特性

項目	条件	記号	min	typ	max
供給電圧	_	VCC_3V3	3.0V	3.3V	3.6V
	CCLK:400MHz		_	78mA	
	SCLK:100MHz				
	CCLK:350MHx		_	70mA	
	SCLK: 87.5MHz				
3.3V 供給時の消費電流	CCLK:300MHz		_	62mA	
(実測・参考値)	SCLK:75MHz	ICC			
(天側・参与框)	CCLK:250MHx		_	54mA	
	SCLK:62.5MHz				
	CCLK:200MHz		_	45mA	
	SCLK:50MHz				
	CCLK:150MHx		_	38mA	
	SCLK:37.5MHz				

電流測定条件

- ・Visual DSP++から JTAG-ICE を使ってプログラムを実行
- ・SPI フラッシュからデータを連続リード
- ・PLL の設定以外プログラムは同一

消費電流は参考値です。プログラムや使用するペリフェラル、動作環境によって異なりますので、供給側の出力電流は余裕をもった設計にしてください。

2.5 DIP スイッチの設定

SPI フラッシュメモリのライトプロテクトおよび、ADSP-BF592 のブートモードの設定を行います。

表 3 DIP スイッチ機能表

番号	操作	説明
1	ON	SPI フラッシュメモリ(U3) をライトプロテクトに設定します。
	OFF	SPI フラッシュメモリ(U3) のライトプロテクトを解除します。
2	ON	BMODE2 ピンの論理をLに設定します。
	OFF	BMODE2 ピンの論理を H に設定します。
3	ON	BMODE1 ピンの論理をLに設定します。
	OFF	BMODE1 ピンの論理を H に設定します。
4	ON	BMODE0 ピンの論理をLに設定します。
	OFF	BMODE0 ピンの論理を H に設定します。

各ブートモードに対応したスイッチ2~4の設定は以下の通りです。

ブートモードの詳細は、アナログ・デバイセズ社「ADSP-BF59x Blackfin Processor Hardware Reference」を参照ください。

表 4 ブートモードと DIP スイッチの対応

ブートモード	スイッチ		F	備考
000	2	3	4	
Idle/No Boot	ON	ON	ON	
001				設定しないでください
Reserved				
010	2	3	4	
SPI1 master boot using PG11	ON	OFF	ON	
011	2	3	4	
SPI slave boot	ON	OFF	OFF	
100	2	3	4	基板搭載の SPI フラッシュメモリか
SPI0 master boot using PF8	OFF	ON	ON	らブート
101	2	3	4	
Boot from PPI port	OFF	ON	OFF	
110	2	3	4	
Boot from UART host device	OFF	OFF	ON	

2.6 コネクタ仕様

- ※ 各表の入出力は、ADSP-BF592 からみたもので、信号名の最後に # が付く名前は、負 論理 (Low アクティブ) であることを示します。
- ※ 各ピンの詳細は、アナログ・デバイセズ社「ADSP-BF59x Blackfin Processor Hardware Reference」を参照ください。

表 5 コネクタ仕様

ピン番号	信号名	入出力	説明
1	EXT_WAKE	出力	Wake Up 出力
2	PPI_CLK	入力	PPI クロック入力
			100 k Ω でプルダウンされています
3	I2C_SCL	入出力	I2C クロック
4	I2C_SDA	入出力	I2C データ
5	PF0	入出力	PF0/DR1SEC/PPI_D8/WAKEN1
6	PF1	入出力	PF1/DR1PRI/PPI_D9
7	PF2	入出力	PF2/RSCLK1/PPI_D10
8	PF3	入出力	PF3/RFS1/PPI_D11

9	PF4	入出力	PF4/DT1SEC/PPI_D12
10	PF5	入出力	PF5/DT1PRI/PPI_D13
11	PF6	入出力	PF6/TSCLK1/PPI_D14
12	PF7	入出力	PF7/TFS1/PPI_D15
13	PF9	入出力	PF9/TMR0/PPI_FS1/SPI0_SSEL3
14	PF10	入出力	PF10/TMR1/PPI_FS2
15	PF11	入出力	PF11/UA_TX/SPI0_SSEL4
16	PF12	入出力	PF12/UA_RX/SPI0_SSEL7/TACI2-1
17	SPI0_MOSI	出力	SPI0_MOSI
18	SPI0_MISO	入力	SPI0_MISO
19	SPI0_SCK	入出力	SPI0_SCK
20	GND	_	電源グラウンド
21	GND	_	電源グラウンド
22	PG0	入出力	PG0/DR0SEC/SPI0_SSEL1/SPI0_SS
23	PG1	入出力	PG1/DR0PRI/SPI1_SSEL1/WAKEN3
24	PG2	入出力	PG2/RSCLK0/SPI0_SSEL5
25	PG3	入出力	PG3/RFS0/PPI_FS3
26	PG4	入出力	PG4(HWAIT)/DT0SEC/SPI0_SSEL6
27	PG5	入出力	PG5/DT0PRI/SPI1_SSEL6
28	PG6	入出力	PG6/TSCLK0
29	PG7	入出力	PG7/TFS0/SPI1_SSEL7
30	PG8	入出力	PG8/SPI1_SCK/PPI_D0
31	PG9	入出力	PG9/SPI1_MOSI/PPI_D1
32	PG10	入出力	PG10/SPI1_MISO/PPI_D2
33	PG11	入出力	PG11/SPI1_SSEL5/PPI_D3
34	PG12	入出力	PG12/SPI1_SSEL2/PPI_D4/WAKEN2
35	PG13	入出力	PG13/SPI1_SSEL1/SPI1_SS/PPI_D5
36	PG14	入出力	PG14/SPI1_SSEL4/PPI_D6/TACLK1
37	PG15	入出力	PG15/SPI1_SSEL6/PPI_D7/TACLK2
38	NMI#	入力	NMI 入力
			4.7k の抵抗でプルアップされています
39	RESET_IN#	入力	リセット入力
40	VCC_3V3	_	3.3V 電源

2.7 JTAG ヘッダ

表 6 JTAG ピンヘッダ

ピン番号	信号名	ピン番号	信号名
1	GND	2	EMU#
3	(KEY)	4	GND
5	VCC_3V3	6	TMS
7	GND	8	TCK
9	GND	10	TRST#
11	GND	12	TDI
13	GND	14	TDO

JTAG ヘッダには、以下の JTAG-ICE を使用することが可能です。

表 7 JTAG-ICE

製品名	備考
Analog Devices	http://www.analog.com/jp/processors-dsp/blackfin/usb-emulator
ADZS-HPUSB-ICE	bf/processors/product.html
Analog Devices	http://www.analog.com/jp/processors-dsp/blackfin/usb-emulator
ADZS-USB-ICE	bf/processors/product.html
Analog Devices	http://www.analog.com/jp/processors-dsp/blackfin/emulator-100/
ADZS-100B-ICE	processors/product.html
gnICE+	http://docs.blackfin.uclinux.org/doku.php?id=hw:jtag:gnice-plus

3 更新履歴

版	更新日	更新内容
第1版	2012/01/23	初版発行
第2版	2012/04/09	P8-9 表 4 21~40番ピンの番号が逆順だったため修正
第3版	2012/05/28	P4 サポートページの案内を追加
		P6 VDDINT 電圧値変更(1.375V)
第4版	2013/01/17	P7 電気特性追加
第5版	2013/01/23	P5 基板外形図更新